#1. Answer		
3		
#2. Answer 7		
#3. Answer 10		
#4. Answer 2		
#5. Answer 9		
#6. Answer 3		
#7. Answer 7		
#8. Answer 5		
#9. Answer 1		
#10. Answer 2		
#11. Answer 3		
#12. Answer 3		

#1. Solution: Let $y = 2^x \cdot y^2 = y + 6 \ y^2 - y - 6 = 0 \ (y - 3)(y + 2) = 0 \ y = 3 \ 2^x = 3 \ x = \log_2(3) \ N = 3$

#2. Solution:

 $(2b+4)^2 = 6b^2 + 4b + 2 \cdot 4b^2 + 16b + 16 = 6b^2 + 4b + 2 \cdot 2b^2 - 12b - 14 = 0 \ b^2 - 6b - 7 = 0 \cdot (b-7)(b+1) = 0 \cdot b = 7.$

#3. Solution:

Notice that
$$25 = 10^{\log{(25)}}$$
. $25^{\overline{\log{(25)}}} = \left(10^{\log{(25)}}\right)^{\overline{\log{(25)}}} = 10^1 = 10^7$

#4. Solution:

 $f'(x) = e^x \left(x^2 + 2x\right)$. $f''(x) = e^x \left(x^2 + 4x + 2\right) a$ and b are the 2 roots of $x^2 + 4x + 2 = 0$. The product is $a \cdot b = 2$.

#5. Solution:

The divisors are: 1, 2, 4, 5, 10, 20, 25, 50, and $100.The \prod uctis: 1*2*2*2*5*10*2*10*5*5*5*10*10*10.$ =2^4*5^4*10^5=10^4*10^5=10^9.`

#6. Solution:

Let x be the fraction of girls and y the fraction of boys. 90x + 84y = 88 and x + y = 1. 90(1 - y) + 84y = 88. 90 - 90y + 84y = 88. 6y = 2 or $y = \frac{1}{3}$. N = 3

#7. Solution:

 $6! = 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 2^4 \cdot 3^2 \cdot 2 \cdot \log(6!) = \log\left(2^4 \cdot 3^2 \cdot 5\right) = \log\left(2^4\right) + \log\left(3^2\right) + \log(5) = 4\log(2) + 2\log(3) + \log(5). \ a + b + c = 4 + 2 + 1 = 7.$

#8. Solution:

If x > -3, then $x^2 + 1 = 5x + 15$. $x^2 - 5x - 14 = 0$. (x - 7)(x + 2) = 0. x = 7 or -2. If x < -3, then $x^2 + 1 = -5(x + 3)$. $x^2 + 5x + 16 = 0$. No real roots. 7 - 2 = 5.

#9. Solution:

Let $y = 4^x - 8$ and $z = 8^x - 4 \cdot y^2 + z^2 = (y + z)^2 \cdot y^2 + z^2 = y^2 + 2yz + z^2 \cdot y = 0$ or z = 0. $4^x - 8 = 0$ or $8^x - 4 = 0$. $4^x = 8$ or $8^x = 4$. $2^{2x} = 2^3$ or $2^{3x} = 2^2$. $x = \frac{3}{2}$ or $x = \frac{2}{3}$. $\frac{3}{2} \cdot \frac{2}{3} = 1$.

#10. Solution:

 $x^2 + x = 3x + 4$. $x^2 - 2x - 4 = 0$ $x = 1 \pm \sqrt{5}$ The points of intersection are $(1 + \sqrt{5}, 7 + 3\sqrt{5})$ and $(1 - \sqrt{5}, 7 - 3\sqrt{5})$ The distance between these point is $\sqrt{(2\sqrt{5})^2 + (6\sqrt{5})^2} = \sqrt{20 + 180} = 10\sqrt{2}.$

#11. Solution:

The terms are: 3, 7, 4, -3, -7, -4, 3, 7, ... The numbers repeat every 6 terms. 2023 divided by 6 has a remainder of 1, so $a_{2023} = a_1 = 3$.

#12. Solution:

By Fermat's Little Theorem, $2^{12} \equiv 1, \mod 13$. Since $100 = 12 \cdot 8 + 4'$ $2^{100} = \left(2^{12}\right)^8 \cdot 2^4$. The remainder is

 $2^4 = 16 \equiv 3, \mod 13.$