

Practice Question C0

Do not turn over until instructed to do so

2024 SENIOR REGIONALS SHU Shuttle Round

Practice Question C0

Do not turn over until instructed to do so

2024 SENIOR REGIONALS SHU Shuttle Round

Practice Question C0

Question C1

Do not turn over until instructed to do so

2024 SENIOR REGIONALS SHU Shuttle Round

Question C1

Do not turn over until instructed to do so

2024 SENIOR REGIONALS SHU Shuttle Round

Question C1

Find the area between the x – axis and $y = x^2 - 2x$ between x = 2 and x = k. Give your answer as a mixed fraction in its simplest form.

C1.

Let k be the number you receive.

Find the area between the x – axis and $y = x^2 - 2x$ between x = 2 and x = k. Give your answer as a mixed fraction in its simplest form.

C1.

Let k be the number you receive.

Find the area between the x – axis and $y = x^2 - 2x$ between x = 2 and x = k. Give your answer as a mixed fraction in its simplest form.

C1.

Do not turn over until instructed to do so

2024 SENIOR REGIONALS SHU Shuttle Round

Question C2

Do not turn over until instructed to do so

2024 SENIOR REGIONALS SHU Shuttle Round

In $\triangle ABC$, D(-4, 1) is the midpoint of \overline{AB} , E(3, k) is the midpoint of \overline{AC} , and F(-2, -3) is the midpoint of \overline{BC} . If (a, b) are the coordinates of point C, find a + b.

C2.

C2.

Let k be the number you receive.

In $\triangle ABC$, D(-4, 1) is the midpoint of \overline{AB} , E(3, k) is the midpoint of \overline{AC} , and F(-2, -3) is the midpoint of \overline{BC} . If (a, b) are the coordinates of point C, find a + b.

C2.

Let k be the number you receive.

In $\triangle ABC$, D(-4,1) is the midpoint of \overline{AB} , E(3,k) is the midpoint of \overline{AC} , and F(-2, -3) is the midpoint of \overline{BC} . If (a, b) are the coordinates of point C, find a + b.

Question C3

Do not turn over until instructed to do so

2024 SENIOR REGIONALS SHU Shuttle Round

Question C3

Do not turn over until instructed to do so

2024 SENIOR REGIONALS SHU Shuttle Round

Question C3

Find t so that |x+12|+|x-k|=t has infinitely many solutions.

Question C4

Do not turn over until instructed to do so

2024 SENIOR REGIONALS SHU Shuttle Round

Question C4

Do not turn over until instructed to do so

2024 SENIOR REGIONALS SHU Shuttle Round

Let \boldsymbol{k} be the number you receive.

Evaluate
$$\sum_{n=2}^{\infty}rac{-2}{(n+1)(n+k)}$$

C4.

C4.

Evaluate
$$\sum_{n=2}^{\infty}rac{-2}{(n+1)(n+k)}$$

C4.

Let k be the number you receive.

Evaluate
$$\sum_{n=2}^{\infty}rac{-2}{(n+1)(n+k)}$$

Question C5

Do not turn over until instructed to do so

2024 SENIOR REGIONALS SHU Shuttle Round

Question C5

Do not turn over until instructed to do so

2024 SENIOR REGIONALS SHU Shuttle Round

Question C5

How many real zeros does the polynomial $P(x) = x^6 + kx^4 - 16x^2 - 16k$ have?

C5.

Let k be the number you receive.

How many real zeros does the polynomial $P(x) = x^6 + kx^4 - 16x^2 - 16k$ have?

C5.

Let \boldsymbol{k} be the number you receive.

How many real zeros does the polynomial $P(x) = x^6 + k x^4 - 16 x^2 - 16 k$ have?

C5.

Question C6

Do not turn over until instructed to do so

2024 SENIOR REGIONALS SHU Shuttle Round

Question C6

Do not turn over until instructed to do so

2024 SENIOR REGIONALS SHU Shuttle Round

Question C6

The function f(x) - f(2x) has derivative of 5 at x = 1, and a derivative of k at x = 2.

Find the value of the derivative of f(x) - f(4x) at x = 1.

C6.

Let k be the number you receive.

The function f(x)-f(2x) has derivative of 5 at x=1, and a derivative of k at x=2.

Find the value of the derivative of f(x) - f(4x) at x = 1.

C6.

Let k be the number you receive.

The function f(x)-f(2x) has derivative of 5 at x=1, and a derivative of k at x=2.

Find the value of the derivative of f(x)-f(4x) at x=1.

C6.

Question C7

Do not turn over until instructed to do so

2024 SENIOR REGIONALS SHU Shuttle Round

Question C7

Do not turn over until instructed to do so

2024 SENIOR REGIONALS SHU Shuttle Round

Question C7

Question C8

Do not turn over until instructed to do so

2024 SENIOR REGIONALS SHU Shuttle Round

Question C8

Do not turn over until instructed to do so

2024 SENIOR REGIONALS SHU Shuttle Round

Question C8

The area, in the first quadrant, bounded by $f(x) = x^2$ and g(x) = x + k is $\frac{a}{b}$, where $\frac{a}{b}$ is in simplest terms. Give the value of a + b.

C8.

C8.

Let k be the number you receive.

The area, in the first quadrant, bounded by $f(x) = x^2$ and g(x) = x + k is $\frac{a}{b}$, where $\frac{a}{b}$ is in simplest terms. Give the value of a + b.

C8.

Let k be the number you receive.

The area, in the first quadrant, bounded by $f(x) = x^2$ and g(x) = x + k is $\frac{a}{b}$, where $\frac{a}{b}$ is in simplest terms. Give the value of a + b.

Question C9

Do not turn over until instructed to do so

2024 SENIOR REGIONALS SHU Shuttle Round

Question C9

Do not turn over until instructed to do so

2024 SENIOR REGIONALS SHU Shuttle Round

Question C9

C9.	
	Let k be the number you receive
Find the numerical coefficient	of the fourth term when $(a + kb)^{\circ}$ is expanded and written in order of decreasing powers of a .
C 9	
l	Let k be the number you receive.
Find the numerical coefficient	of the fourth term when $(a + kb)^8$ is expanded and written in
	order of decreasing powers of a .
C9.	
1	Let k be the number you receive.
Find the numerical coefficient	of the fourth term when $(a + kb)^8$ is expanded and written in
	order of decreasing powers of a .

Question C10

Do not turn over until instructed to do so

2024 SENIOR REGIONALS SHU Shuttle Round

Question C10

Do not turn over until instructed to do so

2024 SENIOR REGIONALS SHU Shuttle Round

Question C10

C10.

Let k be the number you receive.

Find $\lim_{x o 1} \ \left[\ln(x^k) + 1
ight]^{rac{3}{k \cdot \ln(x)}}$. [Hint: L'Hospital's Rule]

C10.

Let k be the number you receive.

Find $\lim_{x o 1} \left[\ln(x^k) + 1
ight]^{rac{3}{k \cdot \ln(x)}}$. [Hint: L'Hospital's Rule]

C10.

Let k be the number you receive.

Find $\lim_{x o 1} \ \left[\ln(x^k) + 1
ight]^{rac{3}{k \cdot \ln(x)}}$. [Hint: L'Hospital's Rule]

Question C11

Do not turn over until instructed to do so

2024 SENIOR REGIONALS SHU Shuttle Round

Question C11

Do not turn over until instructed to do so

2024 SENIOR REGIONALS SHU Shuttle Round

Question C11

Find the smallest integer, x, so that |3x - k| < 3.

C11.

Let k be the number you receive.

Find the smallest integer, x, so that |3x-k| < 3.

C11.

Let k be the number you receive.

Find the smallest integer, x, so that |3x-k| < 3.

Question C12

Do not turn over until instructed to do so

2024 SENIOR REGIONALS SHU Shuttle Round

Question C12

Do not turn over until instructed to do so

2024 SENIOR REGIONALS SHU Shuttle Round

Question C12

Find the area of the triangle with vertices A(-1,0,2), B(2,2,0), and C(0,n,3).

C12.

Let n be the number you receive.

Find the area of the triangle with vertices A(-1,0,2), B(2,2,0), and C(0,n,3).

C12.

Let n be the number you receive.

Find the area of the triangle with vertices A(-1,0,2), B(2,2,0), and C(0,n,3).