

Practice Question B0

Do not turn over until instructed to do so

2024 SENIOR REGIONALS SHU Shuttle Round

Practice Question B0

Do not turn over until instructed to do so

2024 SENIOR REGIONALS SHU Shuttle Round

Practice Question B0

30. Let <i>N</i> be the number you receive. Across 11 complete years, how many months contain
exactly <i>N</i> days each?
30. Let <i>N</i> be the number you receive. Across 11 complete years, how many months contain exactly <i>N</i> days each?
30.
Let N be the number you receive. Across 11 complete years, how many months contain exactly N days each?

Question B1

Do not turn over until instructed to do so

2024 SENIOR REGIONALS SHU Shuttle Round

Question B1

Do not turn over until instructed to do so

2024 SENIOR REGIONALS SHU Shuttle Round

Question B1

Let k be the number you receive.

Evaluate
$$\int_{0}^{k} \left[rac{d}{dx} \left(x^2 - 3
ight)
ight] dx.$$

B1.

Let k be the number you receive.

Evaluate
$$\int_0^k \left[rac{d}{dx} \left(x^2 - 3
ight)
ight] dx.$$

B1.

Let k be the number you receive.

Evaluate
$$\int_0^k \left[rac{d}{dx} (x^2 - 3)
ight] dx.$$

B1.

Question B2

Do not turn over until instructed to do so

2024 SENIOR REGIONALS SHU Shuttle Round

Question B2

Do not turn over until instructed to do so

2024 SENIOR REGIONALS SHU Shuttle Round

Question B2

Let k be the number you receive.

If
$$\lim_{x
ightarrow 1}rac{(2x+k)ig(\sqrt{x}-1ig)}{2x^2-3x+1}=rac{a}{b}$$
, a fraction in its simplest form, find $a-b.$

B2.

Let k be the number you receive.

If
$$\lim_{x o 1} rac{(2x+k)\left(\sqrt{x}-1
ight)}{2x^2-3x+1} = rac{a}{b}$$
, a fraction in its simplest form, find $a-b$.

B2.

Let k be the number you receive.

If
$$\lim_{x o 1} rac{(2x+k)ig(\sqrt{x}-1ig)}{2x^2-3x+1} = rac{a}{b}$$
, a fraction in its simplest form, find $a-b$.

B2.

Question B3

Do not turn over until instructed to do so

2024 SENIOR REGIONALS SHU Shuttle Round

Question B3

Do not turn over until instructed to do so

2024 SENIOR REGIONALS SHU Shuttle Round

Question B3

Let k be the number you receive and let $j=\log_{10}(k).$

The parabola $y = ax^2 - j$ intersects the x – axis and y – axis at 3 distinct points that form an equilateral triangle.

Determine the value of a.

B3.

Let k be the number you receive and let $j = \log_{10}(k)$.

The parabola $y = ax^2 - j$ intersects the x – axis and y – axis at 3 distinct points that form an equilateral triangle.

Determine the value of a.

B3.

Let k be the number you receive and let $j = \log_{10}(k)$.

The parabola $y = ax^2 - j$ intersects the x – axis and y – axis at 3 distinct points that form an equilateral triangle.

Determine the value of a.

B3.

Question B4

Do not turn over until instructed to do so

2024 SENIOR REGIONALS SHU Shuttle Round

Question B4

Do not turn over until instructed to do so

2024 SENIOR REGIONALS SHU Shuttle Round

Question B4

Let k be the number you receive.

if $\ln ig(x^2y^3ig) = 1$ and $\ln ig(x^5y^7ig) = k,$ find the value of $\ln ig(xy^3ig).$

B4.

Let k be the number you receive.

if $\lnig(x^2y^3ig)=1\,\, ext{and}\,\,\lnig(x^5y^7ig)=k,\, ext{find}$ the value of $\lnig(xy^3ig).$

B4.

Let k be the number you receive.

if $\lnig(x^2y^3ig)=1\,\, ext{and}\,\,\lnig(x^5y^7ig)=k,\, ext{find}$ the value of $\lnig(xy^3ig).$

B4.

Question B5

Do not turn over until instructed to do so

2024 SENIOR REGIONALS SHU Shuttle Round

Question B5

Do not turn over until instructed to do so

2024 SENIOR REGIONALS SHU Shuttle Round

Question B5

B5.	Let k be the number you receive. Find the area of the triangle with sides of length $10, 17$, and k .
B5.	Let k be the number you receive. Find the area of the triangle with sides of length $10, 17$, and k .
B5.	Let k be the number you receive. Find the area of the triangle with sides of length $10, 17$, and k .

Question B6

Do not turn over until instructed to do so

2024 SENIOR REGIONALS SHU Shuttle Round

Question B6

Do not turn over until instructed to do so

2024 SENIOR REGIONALS SHU Shuttle Round

Question B6

Let k be the number you receive.

The four-digit number 56yx in base 7 equals the four-digit number k750 in base 8. Find the value of y.

B6.

B6.

Let k be the number you receive.

The four-digit number 56yx in base 7 equals the four-digit number k750 in base 8. Find the value of y.

B6.

Let k be the number you receive.

The four-digit number 56yx in base 7 equals the four-digit number k750 in base 8. Find the value of y.

Question B7

Do not turn over until instructed to do so

2024 SENIOR REGIONALS SHU Shuttle Round

Question B7

Do not turn over until instructed to do so

2024 SENIOR REGIONALS SHU Shuttle Round

Question B7

Let k be the number you receive and let j=k-1.

Solve for x where $x\in\mathbb{Z}^+.$

$$\sqrt{j+\sqrt{j+\sqrt{j...}}}=x.$$

Solve for x where $x \in \mathbb{Z}^+$.

$$\sqrt{j+\sqrt{j+\sqrt{j...}}}=x.$$

B7.

B7.

Let k be the number you receive and let j=k-1.

Solve for x where $x \in \mathbb{Z}^+$.

$$\sqrt{j+\sqrt{j+\sqrt{j...}}}=x.$$

B7.

Question B8

Do not turn over until instructed to do so

2024 SENIOR REGIONALS SHU Shuttle Round

Question B8

Do not turn over until instructed to do so

2024 SENIOR REGIONALS SHU Shuttle Round

Question B8

B8.

Let k be the number you receive and let j = k - 2.

The function $f(x)=rac{x+1}{x^2+j}$ has maximum value at (a,f(a)) and a minimum value at (b,f(b)).

Find a - b.

B8.

Let k be the number you receive and let j=k-2.

The function $f(x)=rac{x+1}{x^2+j}$ has maximum value at (a,f(a)) and a minimum value at (b,f(b)). Find a-b.

B8.

Let k be the number you receive and let j = k - 2.

The function $f(x) = rac{x+1}{x^2+j}$ has maximum value at (a,f(a)) and a minimum value at (b,f(b)).

Find a - b.

Question B9

Do not turn over until instructed to do so

2024 SENIOR REGIONALS SHU Shuttle Round

Question B9

Do not turn over until instructed to do so

2024 SENIOR REGIONALS SHU Shuttle Round

Question B9

B9.

Let k be the number you receive.

The equation of the tangent line to $(3x-2y)^2 + (x-y)^2 = 2$ at the point (k+2,k+3) is y = mx + b.

Find the value of m.

B9.

Let k be the number you receive.

The equation of the tangent line to $(3x-2y)^2+(x-y)^2=2$ at the point (k+2,k+3) is y=mx+b.

Find the value of m.

B9.

Let k be the number you receive.

The equation of the tangent line to $(3x-2y)^2+(x-y)^2=2$ at the point (k+2,k+3) is y=mx+b.

Find the value of m.

Question B10

Do not turn over until instructed to do so

2024 SENIOR REGIONALS SHU Shuttle Round

Question B10

Do not turn over until instructed to do so

2024 SENIOR REGIONALS SHU Shuttle Round

Question B10

B10.

Let k be the number you receive and let j=3k.

The area of one petal of the Polar curve $r=j\sin(2 heta)$ is $rac{n\pi}{2}.$ Find the value of n.

B10.

Let k be the number you receive and let j = 3k.

The area of one petal of the Polar curve $r=j\sin(2 heta)$ is $rac{n\pi}{2}.$ Find the value of n.

B10.

Let k be the number you receive and let j = 3k.

The area of one petal of the Polar curve $r=j\sin(2 heta)$ is $rac{n\pi}{2}.$ Find the value of n.

Question B11

Do not turn over until instructed to do so

2024 SENIOR REGIONALS SHU Shuttle Round

Question B11

Do not turn over until instructed to do so

2024 SENIOR REGIONALS SHU Shuttle Round

Question B11

B11.

Let k be the number you receive.

ABCD is a square. From each of the vertices A, B, and C, parallel lines, l_2, l_1 and l_3 respectively, are drawn so that l_2 is between l_1 and l_3 .

The distance between l_1 and l_2 is k, and the distance between l_2 and l_3 is 2.

Find the area of the square.

B11.

Let k be the number you receive.

ABCD is a square. From each of the vertices A, B, and C, parallel lines, l_2 , l_1 and l_3 respectively, are drawn so that l_2 is between l_1 and l_3 .

The distance between l_1 and l_2 is k, and the distance between l_2 and l_3 is 2.

Find the area of the square.

B11.

Let k be the number you receive.

ABCD is a square. From each of the vertices A, B, and C, parallel lines, l_2, l_1 and l_3 respectively, are drawn so that l_2 is between l_1 and l_3 .

The distance between l_1 and l_2 is k, and the distance between l_2 and l_3 is 2.

Find the area of the square.

Question B12

Do not turn over until instructed to do so

2024 SENIOR REGIONALS SHU Shuttle Round

Question B12

Do not turn over until instructed to do so

2024 SENIOR REGIONALS SHU Shuttle Round

Question B12

B12.

Let \boldsymbol{k} be the number you receive.

When you evaluate
$$\arctan\left(rac{1}{2}
ight)+ \arctan\left(rac{1}{k}
ight)$$
, you get $rac{\pi}{N}$

Find the value of N.

B12.

When you evaluate
$$\arctan\left(rac{1}{2}
ight)+ \arctan\left(rac{1}{k}
ight)$$
, you get $rac{\pi}{N}$

Find the value of N.

B12.

Let k be the number you receive.

When you evaluate
$$\arctan\left(\frac{1}{2}\right) + \arctan\left(\frac{1}{k}\right)$$
, you get $\frac{\pi}{N}$.

Find the value of N.