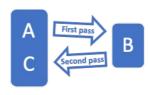
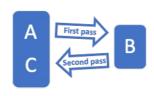


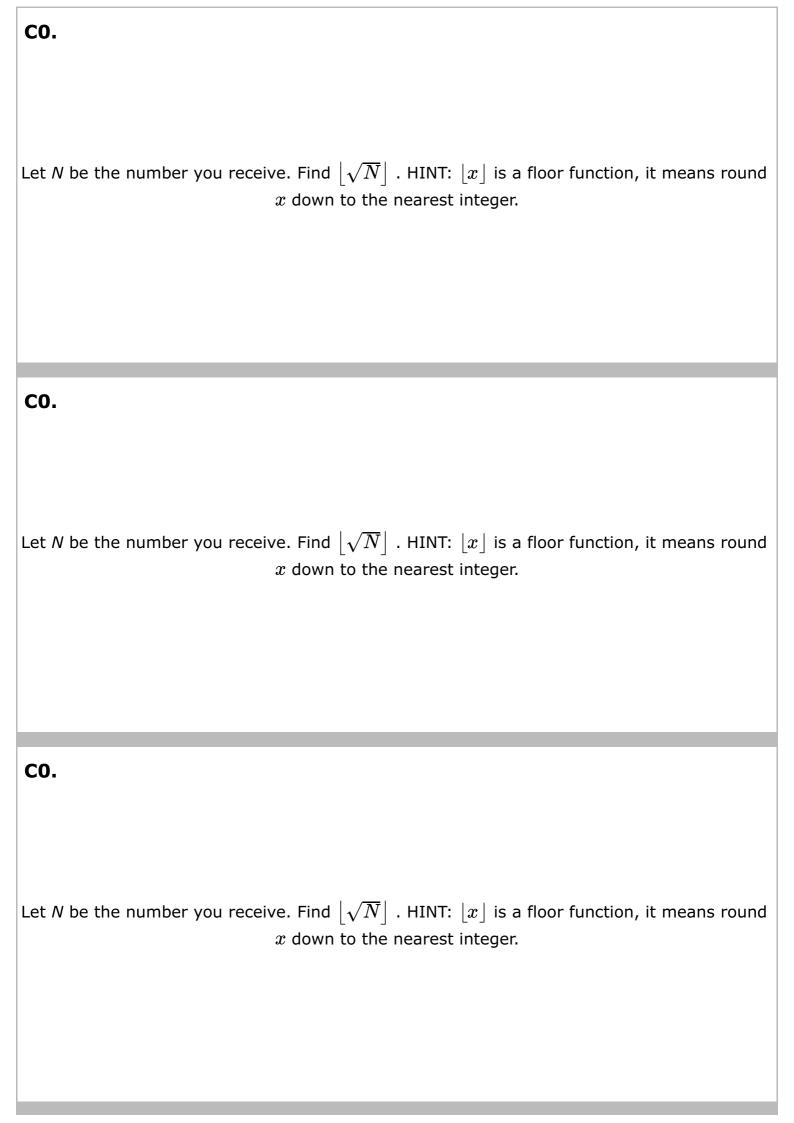
Practice Question C0


Do not turn over until instructed to do so

2025 Senior Regional Shuttle Round

Practice Question C0


Do not turn over until instructed to do so



2025 Senior Regional Shuttle Round

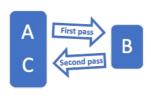
Practice Question C0

Question C1

Do not turn over until instructed to do so

2025 Senior Regional Shuttle Round

Question C1


Do not turn over until instructed to do so

2025 Senior Regional Shuttle Round

Question C1

C1.

Let k be the number you receive.

Real numbers $x \ \mathrm{and} \ y$ have the property that $x^2 + y^2 = k$. We also know that all square numbers are non-negative.

Find the maximum value of 2x + 2y.

C1.

Let k be the number you receive.

Real numbers $x \ {
m and} \ y$ have the property that $x^2+y^2=k.$ We also know that all square numbers are non-negative.

Find the maximum value of 2x + 2y.

C1.

Let k be the number you receive.

Real numbers $x \ \mathrm{and} \ y$ have the property that $x^2 + y^2 = k$. We also know that all square numbers are non-negative.

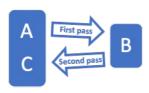
Find the maximum value of 2x + 2y.

Question C2

Do not turn over until instructed to do so

2025 Senior Regional Shuttle Round

Question C2


Do not turn over until instructed to do so

2025 Senior Regional Shuttle Round

Question C2

C2.

Let k be the number you receive.

How many ordered triples (a, b, c) satisfy the equation:

$$abc - 2(ab + ac + bc) + 4(a + b + c) - k = 0$$
?

C2.

Let k be the number you receive.

How many ordered triples $(a,\,b,\,c)$ satisfy the equation:

$$abc - 2(ab + ac + bc) + 4(a + b + c) - k = 0$$
?

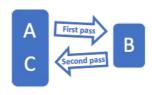
C2.

Let k be the number you receive.

How many ordered triples (a, b, c) satisfy the equation:

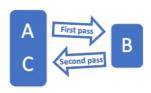
$$abc - 2(ab + ac + bc) + 4(a + b + c) - k = 0$$
?

Question C3


Do not turn over until instructed to do so

2025 Senior Regional Shuttle Round

Question C3


Do not turn over until instructed to do so

2025 Senior Regional Shuttle Round

Question C3

C3.

Let k be the number you receive.

Sets A, B, and C contain positive integers $\leq |k|$.

 $A = \{x : x \text{ is a multiple of } 3\}$

 $B = \{x : x \text{ is a multiple of } 4\}$

 $C = \{x : x \text{ is one more than a prime}\}.$

How many elements are in $(A\cap B)\cup (C\cap B)$?

C3.

Let k be the number you receive.

Sets A, B, and C contain positive integers $\leq |k|$.

 $A = \{x \colon x \text{ is a multiple of } 3\}$

 $B = \{x \colon x \text{ is a multiple of } 4\}$

 $C = \{x : x \text{ is one more than a prime}\}.$

How many elements are in $(A \cap B) \cup (C \cap B)$?

C3.

Let k be the number you receive.

Sets A, B, and C contain positive integers $\leq |k|$.

 $A = \{x : x \text{ is a multiple of } 3\}$

 $B = \{x \colon x \text{ is a multiple of } 4\}$

 $C = \{x : x \text{ is one more than a prime}\}.$

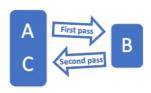
How many elements are in $(A\cap B)\cup (C\cap B)$?

Question C4

Do not turn over until instructed to do so

2025 Senior Regional Shuttle Round

Question C4


Do not turn over until instructed to do so

2025 Senior Regional Shuttle Round

Question C4

C4.

Let k be the number you receive.

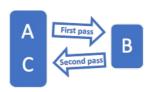
If
$$x+rac{1}{x}=2k$$
, find the value of $x^4+rac{1}{x^4}$.

C4.

Let k be the number you receive.

If
$$x+rac{1}{x}=2k$$
, find the value of $x^4+rac{1}{x^4}$.

C4.


Let k be the number you receive.

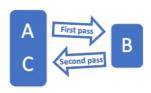
If
$$x+rac{1}{x}=2k$$
, find the value of $x^4+rac{1}{x^4}$.

Question C5

Do not turn over until instructed to do so

2025 Senior Regional Shuttle Round

Question C5


Do not turn over until instructed to do so

2025 Senior Regional Shuttle Round

Question C5

C5.

Let k be the number you receive.

Triangle ABC is equilateral with each side 4k long.

Points D, E, and F are on $\overline{BC}, \overline{AB}$, and \overline{CA} respectively.

Point G is the intersection of \overline{AD} and \overline{EF} and $\overline{AD} \perp \overline{BC}, \overline{DE} \perp \overline{AB}, \text{ and } \overline{EF} \perp \overline{AC}.$ Find the area of quadrilateral GDBE.

C5.

Let k be the number you receive.

Triangle ABC is equilateral with each side 4k long.

Points D, E, and F are on $\overline{BC}, \overline{AB}$, and \overline{CA} respectively.

Point G is the intersection of \overline{AD} and \overline{EF} and $\overline{AD} \perp \overline{BC}, \overline{DE} \perp \overline{AB}, \text{ and } \overline{EF} \perp \overline{AC}.$ Find the area of quadrilateral GDBE.

C5.

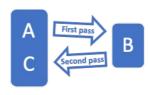
Let k be the number you receive.

Triangle ABC is equilateral with each side 4k long.

Points $D, E, \text{ and } F \text{ are on } \overline{BC}, \overline{AB}, \text{ and } \overline{CA} \text{ respectively.}$

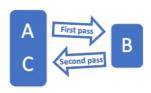
Point G is the intersection of \overline{AD} and \overline{EF} and $\overline{AD} \perp \overline{BC}, \overline{DE} \perp \overline{AB}, \text{ and } \overline{EF} \perp \overline{AC}.$ Find the area of quadrilateral GDBE.

Question C6


Do not turn over until instructed to do so

2025 Senior Regional Shuttle Round

Question C6


Do not turn over until instructed to do so

2025 Senior Regional Shuttle Round

Question C6

C6.

Let k be the number you receive.

If
$$\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)\left(1-\frac{1}{4^2}\right)\cdot\ldots\cdot\left(1-\frac{1}{k^2}\right)=\frac{x}{2k}$$
, find the value of x .

C6.

Let k be the number you receive.

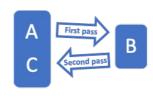
If
$$\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)\left(1-\frac{1}{4^2}\right)\cdot...\cdot\left(1-\frac{1}{k^2}\right)=\frac{x}{2k}$$
, find the value of x .

C6.

Let k be the number you receive.

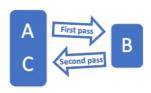
If
$$\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)\left(1-\frac{1}{4^2}\right)\cdot\ldots\cdot\left(1-\frac{1}{k^2}\right)=\frac{x}{2k}$$
, find the value of x .

Question C7


Do not turn over until instructed to do so

2025 Senior Regional Shuttle Round

Question C7


Do not turn over until instructed to do so

2025 Senior Regional Shuttle Round

Question C7

Let k be the number you receive.

If
$$f(x)+2\cdot figg(rac{k}{3}-xigg)=x^2$$
 for all x , find the value of $f(2)$.

Write your answer as an improper fraction.

C7.

Let k be the number you receive.

If
$$f(x)+2\cdot figg(rac{k}{3}-xigg)=x^2$$
 for all x , find the value of $f(2)$.

Write your answer as an improper fraction.

C7.

Let k be the number you receive.

If
$$f(x)+2\cdot figg(rac{k}{3}-xigg)=x^2$$
 for all x , find the value of $f(2)$.

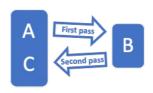
Write your answer as an improper fraction.

Question C8

Do not turn over until instructed to do so

2025 Senior Regional Shuttle Round

Question C8


Do not turn over until instructed to do so

2025 Senior Regional Shuttle Round

Question C8

C8.

Let k be the number you receive.

The notation $\left[x\right]$ means the greatest integer less than or equal to x.

Evaluate
$$[\log_2 1] + [\log_2 2] + [\log_2 3] + [\log_2 4] + ... + [\log_2 k].$$

C8.

Let k be the number you receive.

The notation $\left[x\right]$ means the greatest integer less than or equal to x.

$$\text{Evaluate } [\log_2 1] + [\log_2 2] + [\log_2 3] + [\log_2 4] + \ldots + [\log_2 k].$$

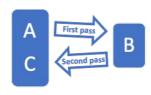
C8.

Let k be the number you receive.

The notation [x] means the greatest integer less than or equal to x.

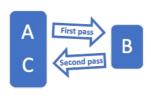
Evaluate
$$[\log_2 1] + [\log_2 2] + [\log_2 3] + [\log_2 4] + ... + [\log_2 k].$$

Question C9


Do not turn over until instructed to do so

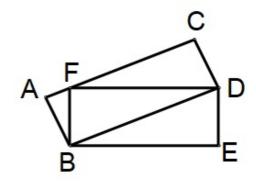
2025 Senior Regional Shuttle Round

Question C9


Do not turn over until instructed to do so

2025 Senior Regional Shuttle Round

Question C9

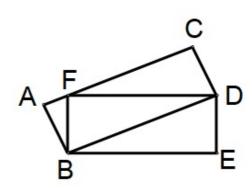


C9.

Let k be the number you receive.

Rectangles ACDB and BFDE are drawn as shown, with Point F on \overline{AC} .

Given that BE = k-1 and DE = 3.5, give the length of \overline{AB} as an improper fraction.

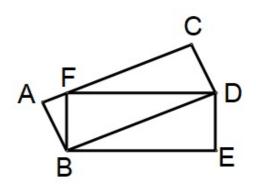


C9.

Let k be the number you receive.

Rectangles ACDB and BFDE are drawn as shown, with Point F on \overline{AC} .

Given that BE = k-1 and DE = 3.5, give the length of \overline{AB} as an improper fraction.



C9.

Let k be the number you receive.

Rectangles ACDB and BFDE are drawn as shown, with Point F on \overline{AC} .

Given that BE = k-1 and DE = 3.5, give the length of \overline{AB} as an improper fraction.

