

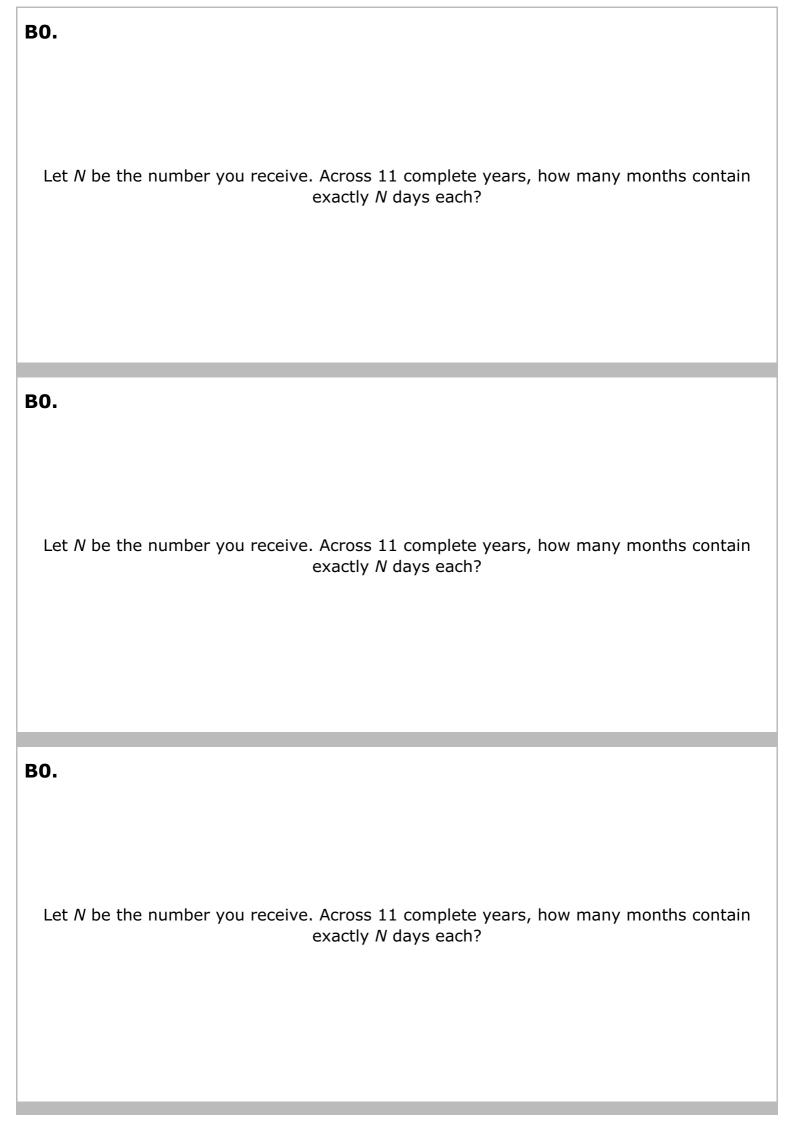
Practice Question B0

Do not turn over until instructed to do so

2025 Senior Regional Shuttle Round

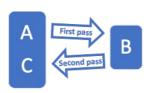
Practice Question B0

Do not turn over until instructed to do so



2025 Senior Regional Shuttle Round

Practice Question B0

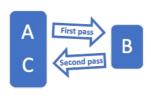


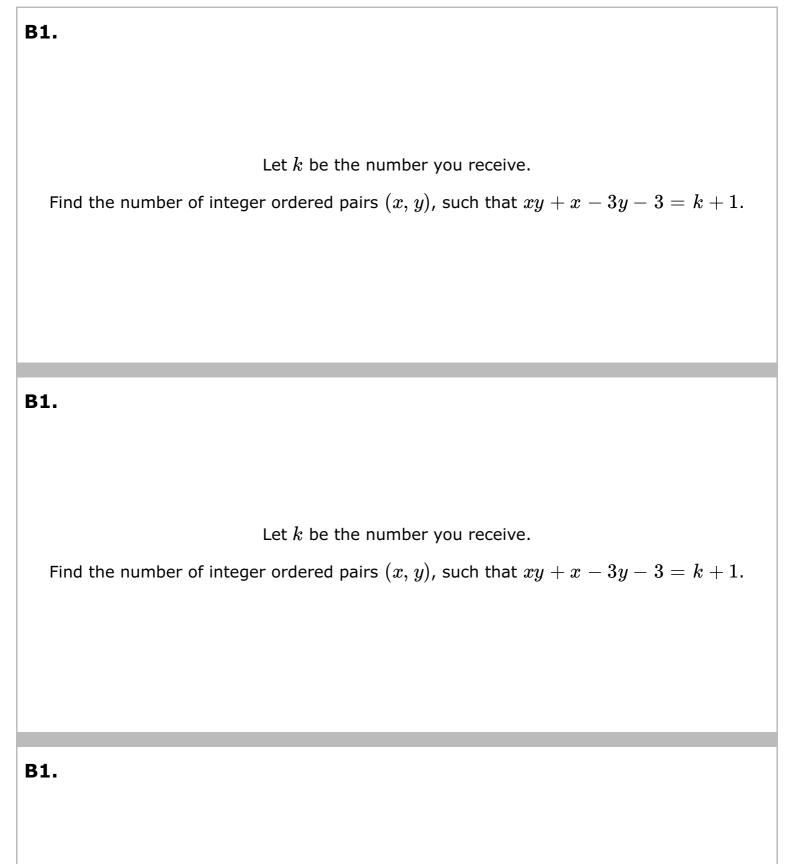
Question B1

Do not turn over until instructed to do so

2025 Senior Regional Shuttle Round

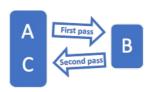
Question B1


Do not turn over until instructed to do so



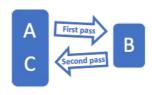
2025 Senior Regional Shuttle Round

Question B1


Let k be the number you receive.

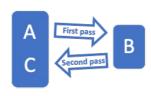
Find the number of integer ordered pairs (x,y), such that xy+x-3y-3=k+1.

Question B2


Do not turn over until instructed to do so

2025 Senior Regional Shuttle Round

Question B2


Do not turn over until instructed to do so

2025 Senior Regional Shuttle Round

Question B2

B2.

Let k be the number you receive.

Let point
$$A=(\,-\,1,4)$$
 and point $B=(2,1).$

If the perpendicular bisector of \overline{AB} contains the point (k+2,b), find the value of b.

B2.

Let k be the number you receive.

Let point
$$A=(\,-\,1,4)$$
 and point $B=(2,1).$

If the perpendicular bisector of \overline{AB} contains the point (k+2,b), find the value of b.

B2.

Let k be the number you receive.

Let point
$$A=(\,-1,4)$$
 and point $B=(2,1).$

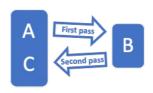
If the perpendicular bisector of \overline{AB} contains the point (k+2,b), find the value of b.

Question B3

Do not turn over until instructed to do so

2025 Senior Regional Shuttle Round

Question B3


Do not turn over until instructed to do so

2025 Senior Regional Shuttle Round

Question B3

В3.

Let k be the number you receive.

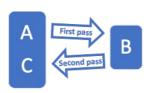
find the minimum value of the function $f(x)=(x+2)(x+4)(x+6)(x+8)+rac{k}{9}$.

B3.

Let k be the number you receive.

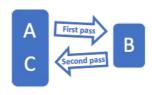
find the minimum value of the function $f(x)=(x+2)(x+4)(x+6)(x+8)+rac{k}{9}.$

B3.


Let k be the number you receive.

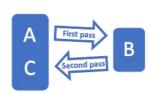
find the minimum value of the function $f(x)=(x+2)(x+4)(x+6)(x+8)+rac{k}{9}.$

Question B4


Do not turn over until instructed to do so

2025 Senior Regional Shuttle Round

Question B4


Do not turn over until instructed to do so

2025 Senior Regional Shuttle Round

Question B4

Let k be the number you receive.

The maximum value of
$$f(x)=rac{x+k}{x^2+1}$$
 occurs at $x=a+\sqrt{b}$.

Find the value of a + b.

B4.

Let k be the number you receive.

The maximum value of
$$f(x)=rac{x+k}{x^2+1}$$
 occurs at $x=a+\sqrt{b}$.

Find the value of a+b.

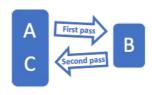
B4.

Let k be the number you receive.

The maximum value of
$$f(x)=rac{x+k}{x^2+1}$$
 occurs at $x=a+\sqrt{b}$.

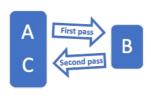
Find the value of a + b.

Question B5


Do not turn over until instructed to do so

2025 Senior Regional Shuttle Round

Question B5


Do not turn over until instructed to do so

2025 Senior Regional Shuttle Round

Question B5

Let k be the number you receive.

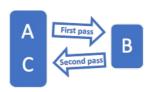
If you simplify
$$\left(\frac{-1+i\sqrt{3}}{2}\right)^{k-2}+\left(\frac{-1-i\sqrt{3}}{2}\right)^{k-2}$$
 , you get $a+bi$. Find $a+b$.

B5.

Let k be the number you receive.

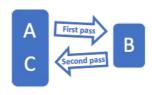
If you simplify
$$\left(\frac{-1+i\sqrt{3}}{2}\right)^{k-2}+\left(\frac{-1-i\sqrt{3}}{2}\right)^{k-2}$$
 , you get $a+bi$. Find $a+b$.

B5.


Let k be the number you receive.

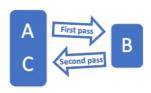
If you simplify
$$\left(\frac{-1+i\sqrt{3}}{2}\right)^{k-2}+\left(\frac{-1-i\sqrt{3}}{2}\right)^{k-2}$$
 , you get $a+bi$. Find $a+b$.

Question B6


Do not turn over until instructed to do so

2025 Senior Regional Shuttle Round

Question B6

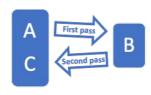

Do not turn over until instructed to do so

2025 Senior Regional Shuttle Round

Question B6

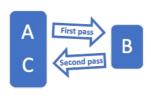
B6. Let k be the number you receive. A right triangle has integer lengths with one side being length 22k. Find the area of the triangle. **B6.** Let k be the number you receive. A right triangle has integer lengths with one side being length 22k. Find the area of the triangle. **B6.** Let k be the number you receive. A right triangle has integer lengths with one side being length 22k. Find the area of the triangle.

Question B7


Do not turn over until instructed to do so

2025 Senior Regional Shuttle Round

Question B7


Do not turn over until instructed to do so

2025 Senior Regional Shuttle Round

Question B7

B7.

Let k be the number you receive.

Note that time is the ratio of total displacement divided by the rate of change (speed) of movement.

Jose wants to average k-2 mph on his bicycle as he rides around a track four times. If he averages 9 mph on the first three laps, how fast must he go, in mph, on the forth lap?

B7.

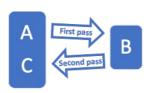
Let k be the number you receive.

Note that time is the ratio of total displacement divided by the rate of change (speed) of movement.

Jose wants to average k-2 mph on his bicycle as he rides around a track four times. If he averages 9 mph on the first three laps, how fast must he go, in mph, on the forth lap?

B7.

Let k be the number you receive.


Note that time is the ratio of total displacement divided by the rate of change (speed) of movement.

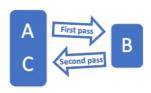
Jose wants to average k-2 mph on his bicycle as he rides around a track four times. If he averages 9 mph on the first three laps, how fast must he go, in mph, on the forth lap?

Question B8

Do not turn over until instructed to do so

2025 Senior Regional Shuttle Round

Question B8


Do not turn over until instructed to do so

2025 Senior Regional Shuttle Round

Question B8

B8.

Let k be the number you receive.

A polynomial P(x) satisfies the equation $P(P(x)-1)=1+x^{16}.$

What is
$$P(k-1)$$
?

B8.

Let k be the number you receive.

A polynomial P(x) satisfies the equation $P(P(x)-1)=1+x^{16}.$

What is
$$P(k-1)$$
?

B8.

Let k be the number you receive.

A polynomial P(x) satisfies the equation $P(P(x)-1)=1+x^{16}.$

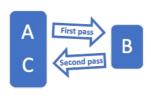
What is
$$P(k-1)$$
?

Question B9

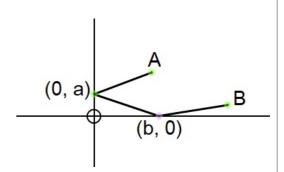
Do not turn over until instructed to do so

2025 Senior Regional Shuttle Round

Question B9

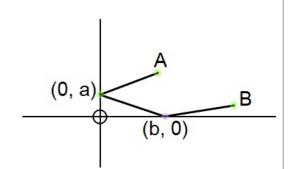

Do not turn over until instructed to do so

2025 Senior Regional Shuttle Round


Question B9

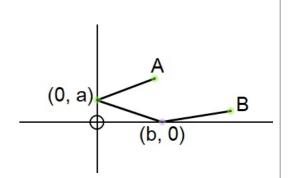
B9.

Let k be the number you receive.


If A(5,4) is only connected to $B\left(\frac{k}{2},1\right)$ using three line segments as shown, find the length of the path from A to B.

B9.

Let k be the number you receive.


If A(5,4) is only connected to $B\left(\frac{k}{2},1\right)$ using three line segments as shown, find the length of the path from A to B.

В9.

Let k be the number you receive.

If A(5,4) is only connected to $B\left(\frac{k}{2},1\right)$ using three line segments as shown, find the length of the path from A to B.

