2024 Senior Regionals LIG Lightning Round Answers

- Runner should change every 20 minutes exercise is good for all!
- Runner always sets off to the back of their column of teams FIRST.
- Correct attempt 1=3 points. Correct attempt 2=2 points. 1 point thereafter.
- Teams may pass after at least 3 attempts, that question cannot then be returned to.
- To determine rank when final points are tied, the number of passes is considered.

PRACTISE QUESTION MUST BE ANSWERED CORRECTLY: 60 minutes

1	4
2	$\frac{1+\sqrt{5}}{2}$
3	60
4	$\frac{28}{3}$
5	10 and -6
6	3
7	$24\sqrt{2}$
8	2
9	512
10	$4\sqrt{13}$
11	$\frac{2\pi}{3} - \frac{\sqrt{3}}{2}.$
12	$2-\sqrt{2}$
13	$\frac{1}{2}$
14	282
15	2008
16	$2\sqrt{5}-2\sqrt{3}$
17	-50
18	25

10	(1 9 9)
19	(1, 2, 3)
20	$\frac{\sqrt[3]{3}}{}$
	2
21	12
22	$\sqrt[4]{2}$
23	$-rac{1}{4}$
24	$\frac{1}{8}\sin(8)-1.$
25	3
26	38
27	39
28	$\frac{11}{16}$
29	$\sqrt{82}$
30	$\frac{2}{7}$
31	$2e^2+2$
32	$\frac{1}{55}$
33	$\frac{1}{12}$
34	3
35	252

2024 Senior Regionals LIG Lightning Round Solutions

#1. Solution:

$$f'(x) = 2x + b$$
. $f'(4) = 8 + b$. $f(4) = 16 + 4b - 20 = -4 + 4b$. $8 + b = -4 + 4b$. $12 = 3b$. $b = 4$.

#2. Solution:

$$x^4 - 3x^2 + 2 - x^3 + 2x = 0$$
 $(x^2 - 1)(x^2 - 2) - x(x^2 - 2) = 0$ $(x^2 - 2)(x^2 - x - 1) = 0$ $x = \pm \sqrt{2}$ or $x = \frac{1 \pm \sqrt{1 + 4}}{2} = \frac{1 \pm \sqrt{5}}{2}$. The largest is $\frac{1 + \sqrt{5}}{2}$.

#3. Solution:

Since 56 is not a multiple of 3, the median is not 56. Therefore, x<56. Mean = $\frac{24+27+56+63+x}{5}=\frac{170+x}{5}$. Therefore x must be a multiple of 5. If x is the median, then $27\leq x<56$.

The only possibilities are x=30 or x=45 as x needs to be a multiple of 3 too. If x=30, then the mean is not prime. If x=45, then the mean is 43 which is prime. If 27 is the median, then the possibilities for x are 5, 10, 15, 20, and 25. If x=15, then the mean is 37 (prime). If x=25, then the mean is 39 (not prime). The other 3 possibilities also do not give a prime mean. So the 2 possibilities for x are 45 and 45. 45+15=60.

#4. Solution:

$$f(2) + 2 \cdot f(4) = 4$$
. $f(4) + 2 \cdot f(2) = 16$ or $f(4) = 16 - 2 \cdot f(2)$. $f(2) + 2 \cdot f(4) = f(2) + 2[16 - 2 \cdot f(2)] = 4 \cdot f(2) + 32 - 4 \cdot f(2) = 4 \cdot -3 \cdot f(2) = -28 \cdot f(2) = \frac{28}{3}$.

#5. Solution:

If P is the point of tangency, then $P=\left(a,a^2+2a+6\right)$. The line lintesects the y- axis at the point (0,-10). y'=2x+2, so 2a+2=b, if b is the slope of the curve at point P. Between the point P and the y intersction of the curve, the slope of the tangent line is $b=\frac{a^2+2a+6-(-10)}{a}=\frac{a^2+2a+16}{a}. \ 2a+2=\frac{a^2+2a+16}{a}.$ $2a+2=\frac{a^2+2a+16}{a}$. $2a+2=\frac{a^2+2a+16}{a}$.

#6. Solution:

If $\sqrt{a} - b$ is a root, then so is $-\sqrt{a} - b$. We know that the sum of the roots of $x^2 + ax - b = 0$ is $-\frac{a}{1} = -a$ and the product is -b. $(\sqrt{a} - b) + (-\sqrt{a} - b) = -2b$ and $(\sqrt{a} - b)(-\sqrt{a} - b) = -a + b^2$. So -2b = -a and $-a + b^2 = -b$. $-2b + b^2 = -b$. $b^2 = b$. b = 1 and a = 2. a + b = 3.

#7. Solution:

It is first assumed that the rectangle has sides x,y, where the diagonal is 12. Using pythagorus, $x^2+y^2=144$. Also, xy=72. Solving these two equations yields $x=y=6\sqrt{2}$, so the perimeter is $24\sqrt{2}$.

#8. Solution:

$$\sqrt{4x^2 + 8x} - 2x = \left(\sqrt{4x^2 + 8x} - 2x\right) \frac{\sqrt{4x^2 + 8x} + 2x}{\sqrt{4x^2 + 8x} + 2x} = \frac{4x^2 + 8x - 4x^2}{\sqrt{4x^2 + 8x} + 2x} = \frac{8x}{\sqrt{4x^2 + 8x} + 2x} = \frac{$$

#9. Solution:

 $v(t)=x'(t)=20t^3-5t^4=5t^3(4-t)$ The particle is going to the right from t=0 to t=4. It is going to the left from t=4 to t=5. $x(0)=0, x(4)=256, \ \ {
m and} \ \ x(5)=0.$ Therefore 256+256=512.

#10. Solution:

Let $x=\angle(ABD)$ and $y=\angle(DBC)$. Since triangles ABD and BDC are isosceles, $\angle(C)=y$ and $\angle(A)=x$. x+x+y+y=180 or x+y=90. We use the Pythagorean Theorem to find $AB=4\sqrt{13}$

#11. Solution:

Recognize that the integral represents a circle drawn with centre (0,0), and radius of 2, between x=1 and x=2. When x=1, $y=\sqrt{3}$, a right angle triangle can be drawn with height $\sqrt{3}$ and base of 1, and an angle of 60 degrees = one sixth of a circle. The region of the integral is one-sixth of a circle with radius 2 minus the area of a triangle with legs 1 and $\sqrt{3}$. $A=\frac{1}{6}(4\pi)-\frac{1}{2}\cdot 1\cdot \sqrt{3}=\frac{2\pi}{3}-\frac{\sqrt{3}}{2}$.

#12. Solution:

 $a,b, \ \ ext{and} \ \ c$ are the roots of $x^3-3x^2-2x+2=0.-1$ is a root, so (x+1) is a factor. The other factor is x^2-4x+2 . Using the Quadratic Formula, we get $x=2\pm\sqrt{2}$. The 3 roots are $-1, \ \ ext{and} \ \ 2-\sqrt{2}, \ \ ext{and} \ \ 2+\sqrt{2}$. $b=2-\sqrt{2}$.

#13. Solution:

Through trial and error on known angles between $0 < x < 1^\cdot 5^{1-4\cdot 0.5^2} = 5^0 = \sin\left(rac{\pi}{2}
ight)$.

#14. Solution:

One side of the pentagon is the hypotenuse of a right triangle. The only possibility for this hypotenuse is 15, because 9, 12, 15 is a Pythagorean Triple. The lengths of the sides if the rectangle are 16(9+7), 21(12+9), 16, and 21. Area = $16 \cdot 21 - 0.5 \cdot 12 \cdot 9 = 336 - 54 = 282$.

#15. Solution:

Let y=x+5. Now the function is $z=(y-3)\big((y-1)(y+1)(y+3)+2024=\big(y^2-9\big)\big(y^2-1\big)+2024=y^4-10y^2+2033.$ $z'=4y^3-20y$ To find the minimum, $z'=0=(4y)\big(y^2-5\big)$ Critical points are y=0 or $y=\pm\sqrt{5}$. Evaluating z for the values of y, we get 2033 and 2008. The minimum value is 2008.

#16. Solution:

The path for the flying bug is the hypotenuse of a right triangle. Distance is $2^2+\left(2\sqrt{2}\right)^2=x^2$ or $x=2\sqrt{3}$. For walking bug, open up the net for the cube and see that $4^2+2^2=y^2$ or $y=2\sqrt{5}$. We need the difference, so the answer is $2\sqrt{5}-2\sqrt{3}$.

#17. Solution:

The common difference is 2a-a=a. Therefore b-2a=a and b=3a. The 4th term is a-6-b=a-6-3a=4a or -2a-6=4a or a=-1. The sequence is: $-1, -2, -3, -4, \ldots$ The 50th term is -50.

#18. Solution:

$$-\frac{1}{4}x^2 + 5 = x^2 - k \cdot 5 + k = \frac{5}{4}x^2 \cdot \frac{\text{So}}{k} + 5 \ge 0 \text{ or } k \ge -5 \cdot 5 + k = \frac{5}{4}x^2 \text{ or } \frac{4}{5}(5+k) = x^2 \cdot y = x^2 - k = \frac{4}{5}(5+k) - k = 4 + \frac{4}{5}k - k = 4 - \frac{1}{5}k.$$
 Since $y > 0'$ we have $4 - \frac{1}{5}k > 0$ or $k < 20$.

Combining these results, we have $-5 \le k < 20$. There are 25 integers in this interval.

#19. Solution:

Let x = a, y = b - 1, and z = c - 2. (1): $x + \log(x) = y$ (2) $y + \log(y) = z$ (3) $z + \log(z) = x$ Obviously (x, y, z) = (1, 1, 1) is a solution. Case1: x > 1 From (1): x < y From (2): y < z From (3): z < x This is impossible. Case 2: 0 < x < 1 From (1), x > y From (2): y > z From (3), z > x. This is impossible, so the only answer is (x, y, z) = (1, 1, 1) or (a, b, c) = (1, 2, 3)

#20. Solution:

$$y'=3x^2+3'$$
 so the slope of the tangent line is $3a^2+3$. The slope is also $\dfrac{a^3+3a+3}{a}$, so $3a^2+3=\dfrac{a^3+3a+3}{a}$. $3a^3+3a=a^3+3a+3$ $2a^3=3$. $a=\dfrac{\sqrt[3]{3}}{2}$.

#21. Solution:

$$\triangle ABC^{\text{ similar to }} \triangle DBA'^{\text{ so }} \frac{4}{5} = \frac{AD}{3} \text{ or } AD = \frac{12}{5}. \text{ Also } \triangle DAE^{\text{ similar to }} \triangle CBA^{\text{ so }} \frac{DE}{AD} = \frac{AC}{BC} \text{ or } \frac{DE}{AD} = \frac{4}{5}.$$
 So each altitude is $\frac{4}{5}$ of the previous altitude. The sum becomes an infinite geometric series with $a = \frac{12}{5}$ and $a = \frac{4}{5}$. $a = \frac{4}$

#22. Solution:

$$x^2-2x-8=(x-4)(x+2)$$
 So $f=0$ means $x=4$ or $x=-2$ However $-2^{\frac{1}{8}}$ is not a real root $f\left(4^{\frac{1}{8}}\right)=f(-2)=0$ $4^{\frac{1}{8}}=2^{\frac{1}{4}}=\sqrt[4]{2}$. So the only answer is $\sqrt[4]{2}$.

#23. Solution:

$$y = r\sin(\theta) = (\sin(\theta) + 1)(\sin(\theta)^{\cdot} = \sin^2(\theta) + \sin(\theta) = \left(\sin^2(\theta) + \sin(\theta) + \frac{1}{4}\right) - \frac{1}{4} \text{ Using complete the square where the format is } a(x+p)^2 + q^{'}, \text{ and the minimum is defined by } -p, q^{'} = \left(\sin(\theta) + \frac{1}{2}\right)^2 - \frac{1}{4}. \text{ The minimum occurs when } \sin(\theta) = -\frac{1}{2}. \text{ Substituting back into } r = \sin(\theta) + 1^{'} r = \frac{1}{2}^{'}, \text{ therefore the least value of y is } -\frac{1}{4}.$$

#24. Solution:

$$v(t) = \int (a(t))dt = \int \cos^2(2t)dt = \int \frac{\cos(4t) + 1}{2}dt = \frac{\sin(4t)}{8} + \frac{t}{2} + C \cdot \text{Substitute} \\ t = 0 \text{ to get } C = -2 \cdot \text{Velocity function is } \\ v(t) = \frac{\sin(4t)}{8} + \frac{t}{2} - 2 \cdot v(2) = \frac{\sin(8)}{8} - 1 = \frac{1}{8}\sin(8) - 1 \cdot \frac{1}{8}\sin(8) = 0 \cdot \frac{1}{8}\sin(8) =$$

#25. Solution

If $x^2-4=1$, Then $x=\pm\sqrt{5}$. If $x^2-2x=0$, then x=0 or 2. However, x=2 gives 0^0 which is undefined. So, there are 3 solutions.

#26. Solution:

The interior angles are all equal to 108° , so angle $A=108^{\circ}$. Triangle ABE is isosceles, so angle AEB= angle $ABE=36^{\circ}$. $\frac{\sin(36)}{AB}=\frac{\sin(108)}{BE}, \text{ or } \frac{\sin(36)}{AB}=\frac{\sin(72)}{BE}.$ $\frac{BE}{\sin(36)}=\frac{\sin(72)}{\sin(36)}=\frac{\sin(2\cdot36)}{\sin(36)}=\frac{2\cdot\sin(36)\cdot\cos(36)}{\sin(36)}=2\cdot\cos(36). \ 2+36=38$

$$riangle DME$$
 is similar to $riangle DEC$ so $rac{EM}{DM} = rac{EC}{DE}$. $DE^2 = 2^2 + 3^{2 ext{r}}$ So $DE = \sqrt{13} \cdot rac{3}{2} = rac{EC}{\sqrt{13}}$ or $EC = rac{3\sqrt{13}}{2}$. Area of the rhombus $= rac{1}{2} \cdot \left(2 \cdot \sqrt{13}\right) \cdot \left(2 \cdot rac{3}{2} \cdot \sqrt{13}\right) = 39$

#28. Solution:

Since Roger won the first set, there are 6 ways that he can win the match.
$$P(WW) = \frac{1}{4}, P(LWW \text{ or } WLW) = \frac{1}{8} + \frac{1}{8} = \frac{1}{4}, P(WLLW \text{ or } LWLW \text{ or } LLWW) = 3 \cdot \frac{1}{16} = \frac{3}{16}.$$

$$\frac{1}{4} + \frac{1}{4} + \frac{3}{16} = \frac{11}{16}.$$

#29. Solution:

Let
$$ABCD$$
 be the parallelogram with shorter diagonal \overline{BD} , and d is the longer diagonal. In Triangle ABD we have $8^2=3^2+8^2-2\cdot 3\cdot 8\cdot \cos(A)$ or $\cos(A)=\frac{3}{16}$. In triangle ACD we have $d^2=3^2+8^2-2\cdot 3\cdot 8\cdot \cos(D)$ The sum of any two adjacent angles in a parallelogram = 180 degrees, and $\cos(x)=-\cos(180-x)$. Therefore $\cos(D)=-\cos(A)\cdot d^2=3^2+8^2-2\cdot 3\cdot 8\cdot \cos(D)=9+64+48\cos(A)=73+48\cdot \frac{3}{16}=82$. $d=\sqrt{82}$

#30. Solution:

Consider a piece of wire of length 7. To solve, make a number line where point A is at 0, point B is at 7 and point C is at 6. Point P can fall anywhere between B and C. $\frac{BC}{AC} = \frac{1}{7}$. We must double the answer, since P can also fall between 0 and 1 $\frac{1}{7} + \frac{1}{7} = \frac{2}{7}$

Let
$$y=\sqrt{x}$$
. So $y^2=x$ and $2ydy=dx$. Our integral becomes $2\int_0^2 \left(ye^ydy\right)$. Use integration by parts where $u=y$ and $dv=e^ydy$ $du=dy$ and $v=e^y$. $uv-\int\!\!\!vdu=ye^y-\int\!\!\!\!e^ydy=ye^y-e^y=e^y(y-1)$. So $2\int_0^2 \left(ye^ydy\right)=2\left[e^2+e^0\right]=2e^2+2$

#32. Solution:

The expression factors into
$$\left(1+\frac{1}{\sqrt{n}}\right)\left(1-\frac{1}{\sqrt{1+n}}\right). \text{ Expanding the product:}$$

$$\left[\left(1+\frac{1}{1}\right)\cdot\left(1-\frac{1}{\sqrt{2}}\right)\right] \left[\left(1+\frac{1}{\sqrt{2}}\right)\left(1-\frac{1}{\sqrt{3}}\right)\right] \left[\left(1+\frac{1}{\sqrt{3}}\right)\left(1-\frac{1}{\sqrt{4}}\right)\right] \left[\left(1+\frac{1}{\sqrt{4}}\right)\left(1-\frac{1}{\sqrt{5}}\right)\right].$$

$$= (1+1)\left[\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)\left(1-\frac{1}{5}\right)...\left(1-\frac{1}{99}\right)\right] \frac{9}{10} \cdot = 2\left[\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot...\cdot\frac{98}{99}\right] \frac{9}{10} \cdot = 2\cdot\frac{1}{3}.$$

#33. Solution:

For this solution, use |ABC| to represent the area of triangle ABC. Triangle ABB is similar to triangle DHB, with ratio 2 to 1. $|HB| = \frac{1}{3}|AH|$ so $|HBD| = \frac{1}{3}|HAD| = \frac{1}{3}\left(\frac{1}{2}|DBC|\right) = \frac{1}{6}\cdot\frac{1}{2} = \frac{1}{12}$. Similarly, $|DET| = \frac{1}{12}$ and therefore the area $|BCED| = \frac{1}{4} - \frac{1}{12} - \frac{1}{12} = \frac{1}{12}$. Alternatively: The kite |BCED| has height $\frac{1}{2}$, width x, and therefore the area $|BCED| = \frac{x}{4}$. (1) Let the triangles of |MHB| and |AET| have a height of $|\frac{1-x}{2}|$, therefore |MHB| and |AET| have areas $|\frac{1-x}{4}|$ each $|\frac{2-2x}{4}|$. (2) Area |AD| is $|\frac{1}{2}|$. (3) Triangles |ABD| and |DET| combined would have area of $|\frac{1}{4}|$ minus the area of the diamond $|\frac{1-x}{4}|$. All the above areas should add up to |1| so we solve for $|x| = \frac{1}{3}$, therefore area |BCED| is $|\frac{1}{12}|$.

#34. Solution:

Since $\sin(x) \leq 1$ and $\log_{10} x < 1$, when x < 10, we need the number of times the 2 graphs cross between 0 and 3π . By plotting a log graph which intersects (1,0) and (10,1), and plotting the sine graph above it, we can see the graphs cross once between 0 and π and twice between 2π and 3π .

#35. Solution:

Let m be the nuber of minutes after which Beyonce catches up to Kelly. Then $\frac{1}{12}m+1=\frac{1}{9}m$ or m=36. Let n be the number of minutes after which Michelle catches up to Kelly. The $\frac{1}{14}n+1=\frac{1}{12}n$ or n=84. The least

common multiple of 36 and 84 is 252. Alternatively: Imagine that the track turns to the opposite direction that they are walking, and turning at a speed of 14 minutes per revolution, so Kelly does not move. Let the distance of the track = d, so that Michelle's effective speed of walking would be $\frac{d}{12} - \frac{d}{14} = \frac{d}{84}$. the time that Michelle takes to meet Kelly

at the same point again (the original point as Kelly hasn't moved) = 84 minutes. Beyonce's effective speed = $\frac{d}{9} - \frac{d}{14} = 5 \frac{d}{126}$. the time that Beyonce takes to meet Kelly at the same point again = $\frac{126}{5}$ minutes. The lowest

common multiple of 84 and $\frac{126}{5}$ is 252 minutes for all three to be on the same point on the track again.